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Post-Newtonian Equations for the Metric Perturbation 
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By using Synge's approximation method to describe the unperturbed prob- 
lem, we obtain the equations for the gravitational field perturbation and the 
Lagrangian displacement that occur when an isolated and initially self-gravitating 
spherical and static elastic earth gets into steady rotation. These equations are 
explicitly derived in an order of approximation for the initial problem where 
both rotation and elastic structure manifest themselves in the perturbed state. 

1. INTRODUCTION 

If in the classical theory of elasticity an earth initially behaves as an 
elastic sphere, in static equilibrium, and under such a strong self-gravita- 
tional action that the theory of superposable small strains cannot be applied, 
it is still possible to study naturally its figure of equilibrium when it is in 
steady rotation by assuming its inner structure to be of homogeneous and 
incompressible type. The reason for this possibility rests upon the fact that 
these two assumptions allow us to consider the initial stress as being of 
hydrostatic type so that a Hook stress tensor for the assumed elastic 
perturbation may be added to the initial stress in order to describe the new 
perturbed state (see, e.g., Love, 1944). 

But when, following the same procedure, the analogous problem is 
attempted to be formulated in general relativity, then two essential difficul- 
ties arise: First, it is impossible to define the figure of the earth until the 
gravitational problem has already been solved (which, in turn, requires the 
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energy distribution to be previously specified), and second, an incompatibil- 
ity between relativistic principles and the assumption of incompressibility 
becomes apparent, as this assumption leads to a speed of sound higher 
than the speed of light. 

To avoid these difficulties, two different approaches, one in terms of 
exact formulations and the other by using post-Newtonian approximations 
(therefore, each one with its own advantages and limitations) have been 
carried out in the past. Thus, by establishing suitable generalizations of 
Hook's law, general relativistic exact formulations of elastic bodies subject 
to initial stress have been carried out by Glass and Winicour (1973) and 
Carter and Quintana (1972). Carter and Quintana (1975) and Quintana 
(1976) have also applied their generalization to study deformations of 
compact bodies by means of models in which a Schwarzschild space-time 
geometry is typically associated to them in their initial state. 

By means of the second approach, that is to say, by assuming that 
a weak gravitational field is generated by the material system under con- 
sideration, more general models can be studied and approximate solu- 
tions for Einstein's equations can be obtained. Following this approach, 
Chandrasekhar and Esposito (1970), Anderson and Decanio (1975), and 
Ehlers (1980) have developed models for material systems when these are 
of hydrodynamic type. 

Now, as Synge's approximation method (Synge, 1970) allows a direct 
analysis of the behavior of material systems with more general inner struc- 
tures than those of hydrodynamic type (such as bodies with elastic structure), 
it is clearly well adapted to study the relativistic problem analogous to the 
classic one described above. Then, using this method (therefore, following 
the second approach), and taking into account the methodology of the first 
one, we derive in this paper the equations for the gravitational field perturba- 
tion and the Lagrangian displacement that occur when an initially spherical 
and static earth, prestressed by its own gravitational attraction, gets into 
steady rotation. 

In connection with the first approach, it is of interest to mention again 
that in this approach both the cited initial configuration and the energy- 
momentum tensor are provisional descriptions in a flat background space- 
time to be used only in describing the initial state. Therefore, following this 
methodology, once the solution for the gravitational problem is derived in 
a predetermined order of approximation, the intrinsic geometry for the 
earth's surface can be specified by means of invariant measures. 

The sequence of the paper is as follows: In Section 2 the geometry of 
the material system is defined and the basic principles of the relativistic 
theory of elasticity for a prestressed body that are needed for this work are 
briefly summarized. As has been said, to this end we follow the line traced 
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by Glass and Winicour (1973) and Carter and Quintana (1972). Coordinate- 
free notation is used to avoid confusion with the coordinate expressions 
that appear in the following sections. Then, by imposing coordinate sym- 
metries compatible with an axis-symmetric earth in steady rotation, in 
Section 3 general equations, that is to say, the equations corresponding to 
an unperturbed problem solved in an arbitrary order of approximation and 
showing the metric perturbation and the Lagrangian displacement, are 
derived. Next, using these equations, the corresponding one for an earth 
having in the perturbed state an isotropic and elastic structure, being 
prestressed by its own gravitational action, and behaving as a perfect fluid 
in the original unperturbed state are derived in Section 4. This derivation 
is carried out in the lowest order of approximation where the elastic structure 
manifests itself. In an Appendix some formulas needed to obtain these 
equations are given. 

2. DESCRIPTION OF THE ELASTIC SOLID 

2.1.  D e f o r m a t i o n  and S t r e s s  

Let 5 P be a four-dimensional differentiable manifold. A continuum 
body is defined in it as an open subset @ c 5 ~. On the 4-manifold M of the 
class ~ ,  connected, of Hausdorff type, and possessing a metric tensor field 
g of type (2 ~ and signature (+, +, +, - ) ,  the motion of ~ is determined by 
the world tube defined by the one-to-one application 

qS: @ x N ~ M  (1) 

where N represents the set of real numbers. The application 4~x : R ~ M 
defined by d~x(t):=d~(X, t) is called a world line. The 4-velocity field 
corresponding to any world tube is given by the application from M onto 
the tangent fiber bundle TM: 

u: M-~ TM 

x-,~ (x, t) (2) 
ot 

where d)(X, t )= x and 

u b ' u = - I  (3) 

Here the superscript b represents the operator that, when acting onto any 
tensor, results in its associated covariant tensor, and the dot represents the 
obvious contraction. In more general cases, the contraction of the i/th 

. . . i l . . .  contravariant with the jlth covariant index will be written as C..j~.... 
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The physical properties of the material system are characterized by the 
symmetric tensor field of type (02). T (the energy-momentum tensor), defined 
by 

T : = p u |  (4) 

where p denotes the energy density and S is the symmetric tensor field of 
type (o 2) called the stress tensor. S satisfies the orthogonality condition 

S . u b = 0  (5) 

and is related to p by means of the characteristic equation of state for the 
material system. 

Using the unit tensor 6 and the 4-velocity (2), the orthogonal project 
tensor field of type (11), which we shall denote by ~, is defined by 

~ : = ~ - u |  (6) 

From this projection operator, ~b can be formed to provide a metric onto 
the vector subspace Sx c TxM orthogonal to u at the point x ~ M. Therefore, 
~b constitutes the generalization of the right Cauchy-Green deformation 
tensor of the classic theory of elasticity. 

At every point of the manifold M the orthogonal projector (6) satisfies 
the conditions 

~ .  n = 0 ( 7 )  

and 

~ -  ~ = ~ (8) 

If  now, following Rayner (1963), the auxiliary metric ~b onto Sx is 
considered, as this metric determines the distance between close world lines 
in the equilibrium state and satisfies both the orthogonality condition 

~b .  u = 0 (9) 

and the rigid motion condition in the sense of Born, that is to say, that the 
Lie derivative of ~o b with respect to u vanishes, 

~ u ~  ~ = 0  (10) 

then a symmetric tensor field of type (o) (the relative strain tensor) can be 
defined: 

e : = � 8 9  ~ b ) (11) 

2.2. Perturbations 

Let us now assume that a perturbation is produced on the material 
system so that the initial space-time (M,g)  is transformed into another 
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(M(1) ,  g(1)). Furthermore,  let us assume that there exists a one-parameter  
family of  space-times (M(A),  g(A)) (solutions of Einstein's equations for 
every A-->0) such that A = 0  and A = 1 correspond to the original and 
perturbed space-time, respectively, and such that g(A ) is an analytic function 
of A in a neighborhood of A = 0. Then, we have defined in this form a fiber 
bundle M with base M(A) and whose fibers are the manifolds M(A). Now, 
to compare  the several elastic systems obtained by means of any possible 
perturbation, we need to transform all the manifolds M(A) onto a common 
one, e.g., M(0)  = M. This can be done by means of a vector field v defined 
on M that, at any point of  M, is not tangent to the corresponding manifold 
M(A) (Stewart and Walker, 1974). Then, this vector field defines locally a 
one-parameter  family of  diffeomorphysms 

~SA: M(O)--> M(A) (VA ->0) (12) 

so that, for a fixed A, 4>A identifies a generic point of  M(A) with a point of  
M(0) ,  provided that these two points are on the same integral curve of the 
vector field v. Then, if QA represents an arbitrary tensor field on M(A),  and 
if O*QA denotes the pullback of Qa along 4~*, we have in the first order 
of  approximat ion and for each x ~ M(0) that 

(~b*Q~)(x) = Qo(x) + h (~,QA)(x) + O(h 2) (13) 

where ASfvQA is the tensor field on M called the first-order perturbation in 
Q (Schutz, 1987). 

If  a new transverse vector field W is chosen on ~t, another in principle 
different one-parameter  family of  diffeomorphysms will be generated. But 
if the fields v and w are related by 

vl0 =wl0+l ~ (14) 

where ~ is a vector field on M (called the displacement vector), then the 
relationship between the first-order perturbations ~ Q  and ~wQ is given 
by the known property of  the Lie derivative: 

~vQ= ~wQ+ SF~Q (15) 

2.3. Lagrangian Perturbation for the Energy-Momentum Tensor 

From now on we will assume that our original material system is static 
with energy density 0(0). This means that in the space-time (M(0) ,  g(0)) 
there is a timelike Killing vector field with spacelike hypersurfaces which 
are orthogonal to the orbits of  the isometry associated to that field. Further- 
more, we will suppose the system to be subject to a stress of  hydrostatic type, 

S(0) = - p ~ #  (16) 
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where p is the pressure and the superscript # represents the operator that 
acting on a tensor gives the associated contravariant tensor. 

On the other hand, we will suppose that in the perturbed state the 
elastic earth is rotating with a constant angular velocity f~(A) so that if L 
denotes its typical length, we have 

e := I"~(A). L<< 1 (17) 

Therefore, the gravitational field in the perturbed state is stationary. 
If ~(A ) denotes the initial stress tensor, then for the perturbed configur- 

ations, in which the elastic coefficients of higher order than the first one 
are neglected, the stress tensor field is given by (Glass and Winicour, 1973) 

Sb(A) = ~b(h)+4  sym[e(h) �9 ~(h)] b 

+ C34[E(.~) | -- ~[tr e(,~)] + O(e 2) (18) 

where (1) tre(A) represents the trace of the relative deformation tensor 
(11); (2) sym denotes the usual symmetrization operation; and (3) E(A) is 
the elasticity tensor field, which is of type (~); it is defined on M(A), and 
satisfies: 

(i) Voight symmetries: 

E()k)(01, 02, 03, 04 ) 

= E(/~)(0 2, 01, 0 3, 0 4) 

= E(A)(O', 0 ~, 0 ~, 0 ~) 

= E ( A ) ( 0  3, 0 4, 0 2, 01) (19) 

where {0 i} (i = 1, 2, 3, 4) is a base of the cotangent space T*M(A) at every 
point x ~ M. 

(ii) Orthogonality with respect to u: 

E(A). ub(Z) = 0 (20) 

(iii) There is the limit 

lim E(A)=: E (21) 
A~0 

If there is defined a world tube ~bA on each manifold M(A), we can 
define difteomorphysms qS~ of the form 

qS~: 05(~ x ~) c M(0) ~ ~bA(~ x[~) ~ M(A) 

~b(X, t)-~ 6~(~b(X, t)):= qSa (X, t) (22) 

keeping the time order on every world line OS~x and satisfying 

,b~*u(a) =u(o)  (23) 
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and 

~b~*~o ( s  = ~ ( s  (24) 

where s is a timelike hypersurface on M(0).  The orthogonal projector 
@(a) is invariant for the diffeomorphysms cb~, i.e., 

L* b ~ ~ (a)= ~b(0) (25) 

Using the classic notation AQ to designate the first-order perturbation 
for an arbitrary quantity Q associated to ~b~, which in fact is its Lagrangian 
variation, we have from (18) (Glass and Winicour, 1973) 

A S  ~--- 34 C~2(E| Ae) - (A tr e)S o 

+ 2[sym(uQSo)] �9 Au b (26) 

where the Lagrangian variation Ae for the deformation tensor (11) is given 
by 

Ae = �89 b (27) 

and the stress tensor ~ by 

S O := SO(0) (28) 

Finally, taking into account the consistence condition imposed on the 
equation of state, which let us write the Lagrangian variation of the energy 
density as 

Ap = - �89 + p ~  ~) | Ag (29) 

the perturbation for the energy-momentum tensor (4) can be written in the 
form 

AT= [-�89 34 C12(E| 

- A(tr e)~ + 2C{{[sym(u@~)] | Au b } (30) 

where all the quantities in (30) are defined on M(0) (Carter and Quintana, 
1972). 

3. EQUATIONS FOR THE PERTURBED GRAVITATIONAL FIELD 
AND SYMMETRIES 

3.1. Successive Approximat ions  

A suitable way to plan in general relativity a problem where the 
gravitational field is weak lies in: (1) defining the energy-momentum T for 
the material system, and the metric g for the corresponding space-time, 
onto a (topologically) Euclidean and Minkowskian 4-manifold M endowed 
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with a Cartesian coordinate system { X  a }  such that, at every point x ~ M, 
the metric tensor is the Kronecker  delta; (2) taking the weakness of  the 
gravitational field in the sense that the dimensionless parameter  k, defined 
as the ratio of  the mass of  any body in the system to its typical size, is less 
than one; (3) seeing that at every point in the interior ~r of  the world tubes 
associated to these bodies, the components T ab of  the field T satisfy the 
conditions 

T ~b = O ( k )  (31) 

and (4) having that in the region ~ exterior to these world tubes, T is null; 
and at the frontier cr the boundary  conditions 

Tabnb = 0 (32) 

are satisfied (rib is the unit Minkowskian normal to cr at every point of  cr 
Then, for the chosen coordinates, the metric g has the form 

gab = r "~- ")lab (33) 

where 7~b are small deviations [i.e., ~Ab = O(k)]  with respect to the Minkow- 
skian metric and are subject to the conditions that the signature of  g is 
preserved. 

Using Synge's approximat ion method (Synge, 1970) up to the nth 
approximation,  we can obtain the expression for gab as a functional of  T ab 

so that the Einstein equations are satisfied with an e r r o r  E ab = O ( k n + l ) .  In 
this method the Einstein equations are relaxed and substituted by the 
recurrence formula 

Lab = ( - H ~ ' b + J D ~ r b H r S )  ( m  = 1 . . . .  , n )  (34) 
m m - - I  m - - 1  

where: (1) L,~b is the part  of  the Einstein tensor G ab linear in 3'ab, given by 
m 

L,,b = 1( Tob, cc + Ycc, ab -- "Yac.cb -- "Yb . . . .  ) 
m m m m m 

1 
-- ~6ob ( "Y,,b, dd -- "Ycd.cd ) (35) 

m m 

(2) H '~b is defined by 
m - - 1  

H a b :  = T a b + K - 1 G  ab, (m = 1 , . . . ,  n; • = 8~-) (36) 
m - - 1  m 1 

~ob is the nonlinear part of  3'; (3) J is the inverse d 'Alembert  integral 
operator  in the Minkowskian space-time (i.e., D -~ = J) ;  and (4) D~  b is the 
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differential operator given by 

0 2  ~2 
D ~  : :  o 

6,,~ Ox g Ox - - 7  + 6b, OX---~ OX ~ 

1 4 0 1  

0 2  

6ar ox ~ OX b (37) 

If, once the approximation method is started, the origin of the coordin- 
ate system is chosen so that the following coordinate conditions are required 
to be satisfied 

where 

Yab.b - 0 (38) 
m 

1 
Y*b := Yah -~6abycc (38') 

then (34) takes the form 

1 z~ ~D "Yah = --K (--Hab + J D ~ H  "s) (39) 
m m--I  m--1 

The solutions of (39) are given in terms of  the integrodifferential 
operator K~ b defined by 

K~ b := --6ar6b, J + j D ~ b j  (40) 

by means of  the recurrence law 

~'*b = 0 ,  ~ ,% = ~ . . a b  . . . .  -zK~-rsrl (m = 1 , . . . ,  n) (41) 
0 m rn- - I  

so that, if in the nth iteration the tensor H ab satisfies the equation of motion 

H% b : 0 (42) 
n - - I  

then the metric deviation in the nth order of approximation, given by 

")/~ab ,~ *Tab r r rs = -zK~rs r l  (43) 
n n - - I  

is the solution for the equation 

1 , _ _ K T a b _ _  d a b  5Yob = (44) 
n n- -1  

Calculating the Einstein tensor with the metric 

gab  : 6 ab -~ ")lab 
n 

with % given in (43), and defining the tensor 3 -~ by (Pechlaner and Synge, 
1968) 

gab := --K -I Gab (45) 
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it results that (3 -ab, gob) can be interpreted as an exact solution of the 
gravitational field equations with the property that (45) is not null in ~,  
although its value there, given by the residual part E ab = O(kn+~), can be 
made arbitrarily small by increasing the order of approximation. 

3.2. Equations for the Perturbed Field 

Let us consider that (J-ah(0), gab(O)) represents an exact solution Of a 
certain unperturbed problem associated, according to the previous interpre- 
tation, with an approximate solution in the nth order of approximation. 
On every space-time (M(A), gob(A)) corresponding to a perturbed state, we 
can define quasi-Cartesian coordinates so that the metric tensor has the form 

gob(A) = rSob + Tab(A) (46) 

To establish the identification of the manifolds M(A) according to (12), it 
is more convenient not to use the diffeomorphysms (22), but another instead, 
say cb~, that relate every point in M(0) to another in M(A) with its same 
coordinates (x ~). Then, if the first-order perturbation (13) associated to 4'~ 
for an arbitrary quantity Q is denoted by the classic symbol 3Q (Eulerian 
variation of Q), as 8Q is related to AQ through (15), we can write the 
"energy-momentum" tensor for the perturbed state in the form 

3-~ = Tab(O) + E ~ + •T ab -b 3Eab(o) (47) 

Therefore, if the first-order perturbation for the residual part Eab satisfies 

6E~ < - EOb(A) ('CA -->0) (48) 

then, from (47), we have 

T'~b(A ) = T'~b(o) + 6T  ~ + O(k n+l) (49) 

because Eab(z) = O(kn+l). 
Now, taking into account that the metric tensors 

gob(O) = 3ab + yah(O) (50) 
n 

and 

gob(,~) = 6oh + z,~ (5o ' )  
n 

corresponding to the original and perturbed space-times satisfy exactly the 
gravitational field equations 

Lo~(O) + d~ = -~9-~ (0) (51) 
n n 

and 

Lob(A ) + Gab(A ) = - K S  ab (51') 
n n 
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respectively, it results that the metric perturbation associated with the 
diffeomorphysm &~, which is given in accordance with (13) by 

g~b(A) =: gob(0) + ho,, (52) 

has to satisfy the equation 

8L.h  + 8 G  ab = - - K ( ~  -ab (53) 
n t l  

or, what is equivalent, the approximate equation 

~ L a b  + t ~ G  ab = - K S T  ~b + O ( k  ~+~) (54) 
n n 

Now, in applying the successive approximation method, we will hold 
the expression for the tensor T ob as fixed, though its "geometric" expression 
is changing for every order of approximation. We also keep a fixed form 
both for T ab and 8 T  ab, and we suppose that the perturbations for the 
energy-momentum and metric tensor are subject to the conditions 

6 T  ~ = O(e)  (55) 

and 

hab = O(e)  (56) 

respectively [e is the parameter (17) associated with the perturbation]. For 
(55) to be compatible with (31) we assume that e -< k and we will consider 
perturbations for which e 2 -  < k "+l. Then, denoting by m the least natural 
number such that k ~ e  <~ m+l k , (54) can be written in the form 

8L,,b = - ~ : S H  ab + O (  k me ) (57) 
n 

where 6 H  ab is the Eulerian variation for (36), that is to say, 

t ~ H  ab = 8 T  ab + K - l t ~ a  ab (58) 

Now, as the Eulerian variation for (35), which is given by 

~ L a b  = l ( hab, c c + hcc, a b - h ..... b - -  hb ..... ) 
n 

--  l ~ a b ( h c c ,  dd - -  hcd, cd ) "d- 0 (8  2) (59) 

(commas denoting partial differentiation), satisfies the identity 

8Lah, h = O(e 2) (60) 
n 

it is clear that the number of functionally independent equations in (57) 
reduces to six, whereas the number of unknowns (s ~a, h~b) is 14. It is therefore 
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possible to impose coordinate conditions, and for that we choose them to 
be of the type 

hab, b - O(e 2) (61) 

Then, taking into account (61), equation (57) becomes 

hat, -- -2K6H ab + O( kme ) (62) 

3.3. Coordinate Symmetries 

Up to this point the reasoning has been carried out without establishing 
any particular figure for the material system. We will now impose coordinate 
symmetries compatible with equilibrium figures for an axis-symmetric earth 
endowed with planes of  symmetry as well as with steady rotations for its 
corresponding perturbed states. To this end we require the tensor fields 
gab(A), Tab(A) (with A -->0), and ~a to be invariant under: (1) transforma- 
tions of the group ~q generated by the one-parameter transformations 

fl: {xtl=xl, x'2=X2, Xt3=X3, xt4=x4"~-T} (63) 

and 

f2: {x'l=xlcosot-x2sino~,x'2=xlsina+xZcoso~,x'3=x3,x'4=x4} (64) 

(where ~- and a are real parameters); and (2) the discrete transformations 

f3  : { X'I  : x l ,  x ' 2  = X2, Xt3 = --X3, xr : X4} (65) 

and 

f 4 :  { X "  = X 1, X '2 = X 2, X '3 = X 3, X '4 = --X 4} (66) 

As is known, the most general symmetric tensor Q of type (~), or (o), 
~g-invariant under transformations of if, has components 

( [(xl)2ql+q2] xlX2ql xlq3 --x2q4) 
[(x2)2ql+q2] x2q3 xlq4 (67) 

sym q5 0 
q6 

where qi are functions of x 3 and of the radius, defined by 

r2: = (xl)2+ (x2) 2 (68) 

and where q3 is odd in x 3, and ql, q2, q4, qs, q6 are even in x 3. The most 
general ~-invariant coordinate displacement has components 

b~l : ~ l X l  ~2 : ~ l X 2  ~3 : ~2, ~4 = 0 (69) 

where 

= ~(r, x 3) ( j  = 1, 2) (70) 
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~'~ and if2 are even and odd in x 3, respectively. This way, since all the fields 
considered in the problem will be ~d-invariant, we reduce the number of 
unknowns from 14 to 8 in (62). 

4. EXPRESSION OF THE EQUATIONS OF MO TIO N  FOR 
THE PERTURBATION WITH n =4  

Now, due to the coordinate symmetries imposed on the earth in the 
previous section, the components of the tensors h*b and ~H ab in (62) are 
of the form (67). Then, denoting by hi = hgi(r, x 3) and Hi = H~(r, x 3, ~a) 
( i=  1 , . . . , 6 )  the functions qi in (67) corresponding to h*b and ~H ab, 
respectively, a straightforward calculation shows that the coordinate condi- 
tions (61) reduces to the following equations: 

rhl, r + 3h  1+1 h2,r + h3,x 3 = O(e2 ) 
r 

rh3,r + ha + hs,x 3 = O(E "2) (71) 

On the other hand, taking into account that for a stationary gravitational 
field such as the one we are considering, the d'Alembert and Laplace 
operators are coincident, then eqs. (62) that are functionally independent 
have the final form 

V 2 h l + 4  hl,r = - 2 K H I +  O(e2 ) 
r 

V2h2+2h1 = 2KH2+ O(e  2) 

g 2 h 3 + 2  h3,r = - 2 K H 3 +  O(e2 ) 
r 

~2h4-~ 2 h4, r = -2KH4-t- O(e  2) 
r 

V2h5 = -2KH5 + O(e 2) 

(72) 

V2h6 = -2KH6 + O(e 2) 

The point now is to calculate the functions Hi in the lowest order of  
approximation that we need for the effects due to the elastic structure in 
the perturbed state to manifest themselves in the deformation of  this earth. 
To do this, we will calculate the Eulerian variation for the tensor H ~b, 
defined in (36), by deriving, first, the variation for the energy-momentum, 
ST ab , and second, the corresponding one for the truncated Einstein tensor 
3(~ab. To calculate 8T ab, we will suppose, in addition to the assumptions 
leading to (30), that in the perturbed state the earth has the structure of a 
solid of isotropic elastic type and therefore that the elasticity tensor E in 
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(26) has the following components: 
E abcd = l~)ab~ )cd 3V 2]z~a(c~  d)b (73) 

where h a n d / z  are the Lame coefficients. Then, by using (15), (16), (30), 
and (73), we have for the Eulerian variation of the energy-momentum as 
a function of  the exact metric tensor (33) the following expression: 

~Tab =l{p~cdiAaub __p[ ~Cd (uatlb q_ ~ab)  __4~c(bua)ud ] 

_ z~ob~  ~a _ 2 / ~ ( ~ d )  b} 

x(h*~d ! ~  I,*c~_ - 2~'~d"~ -- ~,d + ~d,~ + 2r~d~i) 
a b ad c c (a b) - ( p u  u - p ~  )A - 2 [ p u  u ~,~ 

_ p~C(~z.b)] + O(e 2) (74) 

In the weak static gravitational field approximation, the orders of 
magnitude with respect to the parameter k for the functions p, u a, and p 
in the energy-momentum tensor are in an orthonormal frame (McCrea and 
O'Brien, 1978; Carter and Quintana, 1977) 

p = O ( k ) ,  u a = O ( k ~  p ~ A ~ I~ = O ( k  2) (75) 

and, since the metric tensor gob is O ( k ~  then we have for the orthogonal 
projection tensor 

~ob = O ( k  ~ (76) 

With respect to the unknown quantities in the perturbed state we admit, 
in addition to (56), that both the Lagrangian displacement as well as its 
derivatives satisfy 

~:a = O(e)  (77) 

It must be said, as was pointed out previously, that in these derivations 
we only consider perturbations such that if the weak-field approximation 
for the original problem is carried out with an error O ( k n + l ) ,  then this error 
is of the same order of magnitude as the error associated with the perturba- 
tion. Then, it can be observed from (74) that the prestressed elastic structure 
of the earth in rotation gives rise to terms of the order O ( k 2 e )  and, therefore, 
we only need to take them into account if the weak-field approximation is 
carried out at least in the fourth order of  approximation with respect to k 
[i.e., with an error O(kS)]. In other words, with a lower approximation we 
would only take into account the perturbative effects due to the rotation. 
Since it is necessary to consider such an apparently high order to maintain 
the consistency of the different approximations, the fact is that we only 
need the metric tensor in the second iteration in the expression (74). This 
iteration corresponds to the fourth approximation in Synge's method and 
only contains the first-order terms in k given in expression (A1) of the 
Appendix. 
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Now, to complete the calculation for the perturbation 6 H  ~b, we will 
derive the perturbation corresponding to the truncated Einstein tensor. This 
tensor can be written in the form 

~ab = iab + iXab + iii~b + O ( k  5) (78) 

where Iab, II  ~b, and I I I  ab are homogeneous functions of  the second, third, 
and fourth order in k, respectively, that depend upon the metric deviation. 
From (56), together with the relation established between the parameters  
e and k when n = 4, we deduce that the order of  magnitude with respect 
to k for the metric perturbation is such that the Eulerian variation for (78) 
is given by 

t~G ab --- 6I ~ + tSII ~ + O ( k  5) (79) 

In the expressions of 6I ob and 6II  ab we only need the unperturbed metric 
of  the second and first order in k, respectively. Therefore, the tensor given 
by McCrea (1981) with an error O(k  4) is enough to obtain the Eulerian 
variation of  I ab. Thus, we obtain [see (A5)] 

1 , 61 ~ = 8Mab - hrsLrabs - -  ' ~ r s ~ L r a b s  "4-~habL~r 
1 , ~ 

+ ~7~b6L~ + 6abh~L~ + ~abTrs~grs 
- harL*b + yar6L*b + hbrLr~* + "Ybrt~L*ra (80) 

and for the variation of  II  ab we have 

8I I  ~b= h, . .[rb,  m][ra ,  n] + y, . . ( t~[rb,  m])[ra ,  n] 

+ y , . . [ rb ,  m ] ( ~ [ r a ,  n]) -�89 , m][rs ,  n] 

+ ym. (6[ r s ,  m])[rs ,  n] + ym.[rs ,  m] (6[ r s ,  n])} 

-- hrsMrabs - 'yrs( ~Mrabs) -t- hrp.YpsLrabs 

+ TrphpsLrabs + y~pyw(6L~ab~) + (%b[hrsM~ 
+ * . �9 �9 

y~s6M ~ - hw yp~Lr~ - ywhpsLr~ - yw yp~6Lr~ 
1 1 1 

-- ~hrs TpqLrpqs - ~'YrshpqLrpqs - ~'Yrs')lpq ( t~ Lrpqs )] 
1 * __hab(gMpp_t_.yrsLers ) __ ! �9 �9 �9 Yab(26Mpp + h~.~L*~ 

+ yr~6L*~) - hb~M~a + yb~(6M~,) + ha~M~b 

+ y, ,r(6Mrb) + h~s('y,wLrbps + YbpL,ws) 

+ Y~s [ havL~bp, + Y,p (6Lrbps) + hbpLr,ws 

- -  ~ h a r , ) / b s L r r  - -  ~ T a r h b s L r r  q_ ,~pb t~Lraps]  1 * 1 * 

, + + * -~ya~yb.~(t~L.) (h~rybs y~rhb~)Lrs 

+ ~'a~'~(~L*r~) + h.(VorL*~ + ~,~rL*~) 

+ ~,~[ho~L*~ + ~,a,(~L*~)+ h~rL*~ + ~,~L*~] + 0(~  ~) (81) 
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where the symbols ~Labcd , 6 L ,  b, 6[ab,  c], ~M abcd  , and 6M~b appearing in 
(80) and (81) are obtained by Eulerian deviations of (A8)-(A10) in the 
Appendix. Notice that the metric deviations for the space-time correspond- 
ing to the unperturbed problem have to enter in (80) with an error O(k3), 
whereas in (81) it is enough to take their expressions with an error O(k2). 
Finally, using (74), (80), and (81) in (58), we have the final expression for 
t~H ab, so that the perturbative problem is determined in the approximation 
required. 

APPENDIX 

The metric in the second approximation for a static earth is 

gab = r "~- ")lab "~- Tab "~ O(k3) 
1 2 

with 

where 

g ~  = ~ r  + (2 V/~.r + [ 2 ( - K , ~  + V 2) 8 ~  + 4K~r + E~r ] + O(k 3) 

g~4 = 0 

g44 = 1 -J- ( -2  V)-~- [-2(Ko-o- - V2)]-~ - O(k 3) 

(A1) 

(A2) 

f 
V : = - J  T44(x')Ix-x'[ -1 d3 Xt=O(k) 

K ~  := f T~(x')lx-x'l ' d a x ' =  O(k 2) (A3) 

If E ~ : = - - -  ( V ~ V ~ + 2 V V ~ ) I x - x ' [ - '  d 3 x ' = O ( k  2) 
7/" 

The orthogonal projection contravariant tensor in the first approximation is 

~,~b = ~ab -- "Y,~b + U'~u b + O ( k 2 )  (A4) 
1 

The Christoffel symbols of the first and second kind in the first approxima- 
tion are 

[ab, c]1 = �89 + 3'ac, b -- Tab.c) (A5) 
I 1 1 

rT,,. = ~,,h[bc, d] ,  (A6) 
1 
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The  t r u n c a t e d  E i n s t e i n  t e n s o r  in  the  th i rd  a p p r o x i m a t i o n  is 

~ a b  M o b -  ' * * * = TrsLrabs +SYabLrr + tS,~bT~L~s --2y~(aLb)r 

+ ym.[rb,  m][ra,  n] --�89 m][rs, n] -- TrsMrabs 

1 1 
--  2~  ab Trs TpqLrpqs - Tab (~ M pp q- TrsL *rs ) 

1 
-- 2M~(aTb) r + 2T~Tp(~Lb)rp's - ~TabTbsL~r 

"[" "~ar'YbsL ~rs "31- 2 "~rs'Yr( a L  ~b )s "~ O(k 4) (A7) 

w he re  the  p a r e n t h e s e s  e n c l o s i n g  indexes  d e n o t e  s y m m e t r i z a t i o n ,  a n d  Labcd , 

L 'c ,  Mabcd, a n d  M*c are  de f ined  by  

�9 i + 
Labcd "= 5(T.d, bc "Ybc, ad -- "Yac, bd -- 7bd, ar 

L*~ := Lmb~m 

Mab~a := [ad, m][bc,  m ] -  [ ac, m][bd ,  m] 

M*c := M,.bcm 

(A8) 

(A9) 

(AIO) 

( A l l )  
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